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THERMAL DIFFUSION OF CESIUM VAPOR IN HELIUM
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An examination is made of thermal diffusion of cesium vapor in heli-
um. Calculations of the diffusion coefficients and the thermal diffu-
sion ratio are made from an evaluation of the thermal diffusion flux
during condensation of cesium from a mixture containing helium,

It is well known that in gases, in addition to con-
centration diffusion, which is proportional to the gra-
dient of relative concentrations or the partial pres-
sures, there occurs thermal diffusion, proportional
to the temperature gradients. The kinetic theory of
transport phenomena in rarefied gases has been devel-
oped by Enskog and Chapman [1, 2]. This theory leads
to the following expression for the flux gy (in mass
units) of one component of a two~component mixture of
ideal gases:

. M,PD,, M
g, = — -k 12 2 %

RT (M, — M, %“F M,

X [grad % +fTT— grad T} . 1)

The first term on the right of (1) describes concen-
tration diffusion, and the second thermal diffusion. At
not too low temperatures the thermal diffusion ratio
k1 for mixtures of all ordinary gases (nonionized) is
positive, if the subscript 1 denotes molecules with the
larger mass or having the larger dimensions [2, 3].
These molecules then move because of thermal diffu-
sion in the direction of lower temperatures. The
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Fig. 1. The diffusion coefficient Dy, cm?/
/sec for a mixture of cesium and helium:
1) for P = 10° N/m?% 2) 0.6 - 10% 3) 0.4 *

- 10°.

thermal diffusion displacement of molecules of the
second component is in the opposite direction. When

the mixture temperature is lowered, kT decreases,
and a point of inversion may be reached when the sign
of ke changes.
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Fig. 2. Thermal diffusion ratio ky for a

mixture of cesium and helium,

1
46'0‘

The flux g, of the second component of the two-
component mixture is equal in magnitude to the flux
g1, and oppositely directed.*

The theory of Enskog and Chapman leads also to
relations determining the coefficients Dy, and k. The
specific formulas may be found in {2]. In calculations
the Lennard-Jones potential

@10 (r) = 435 [(019/1)2 — (01y/7)'] (2)

is ordinarily used for the potential energy of interac-
tion of nonpolar molecules.

The parameter €y determines the depth of the
potential well, while the parameter oy, is proportional
to the distance between molecules at which the poten-
tial energy reaches a minimum (r = $20p).

The quantities €5 and 0,3 are usually determined
with the aid of the combination rules

€12 = Veuazz , (3)
G1p = (04 + 0)/2, (4)

where the quantities €y, €33, 011, and oy, refer to the
components of the mixture. Use of the combination

*In elementary treatments it is usually agssumed that
the opposing molar fluxes are equal in absolute magni-
tude, and not the mass fluxes, as follows from the
strict theory. However, when the differences in the
molecular weights are not large, this does not lead to
important differences.
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rules leads to comparatively good results, if the cor-
responding parameters for the mixture components do
not differ substantially from one another.

Later in this paper we shall consider a mixture of
cesium vapors and of cesium and helium vapor. In
this case the parameters & (for cesium) and &,, (for
helium) are markedly different, and the calculation
according to formula (3) is evidently unreliable, How-
ever, direct data on the parameters e, and oy, are
available for a mixture of cesium and helium. Robin-
son [4] has shown that calculations based on the shift
of hyperfine structure of spectral lines of cesium in a
mixture with helium are in agreement with test data
if it is assumed that &,,/k = 40.8° K and o, = 3.39 A.
These values are also used in our calculations.

The values of the coefficient Dy; and kp were cal-
culated from the first approximation. The second and -
subsequent approximations usually give very small
changes in the values of D3, but can lead to more
substantial change for the values of KT [2]. However,
for the purposes of the following analysis, it will be
adequate to restrict ourselves to the first approxima-
tion. It should be noted that the value of k is very
sensitive to a difference in the molecular weights in
the mixture. For cesium M, = 132.9 and for helium
M, = 4. We should therefore expect comparatively
large values of k.

In the calculations of k', besides the values of g,y
and oy5, we also require the values of gy, 04y, &, and
032. For helium the values assumed were €45/k =10.22°
K and 0y = 2.58 A [2]. For cesium, according to
estimates from the boiling temperature ,;/k = 1108° K,
and according to measurements of the volume of the
molecule in the solid phase oy = 5.4 A [5]. Robinson
[6], from calculations using the above value of 0,5, ob~
tained for cesium oy, = 4.55 A and £;;/k = 4.49° K (in
[6] this is given in error as 4490° K). The difference
in the values of g, is substantial, but, in the case of
small content of cesium in the helium, this has, in
fact, little influence on the calculations of k.

The values found for Dy; (for several pressures) and
of ky (for a low content of cesium in helium) are shown
graphically in Figs. 1 and 2.

The theory of Enskog and Chapman was developed
relative to rarefied gases. However, the corrections
for dense gases at pressures of the order of several
atmospheres are still not substantial, and the theory
of Enskog and Chapman is valid. The reservation
should be mentioned, however, that the theory in
question, while giving good results in calculations of
diffusion coefficient and other similar transport coef-
ficients, is not sufficiently accurate for calculation of
thermal diffusion. Particularly large deviations may
oceur in the vicinity of the inversion temperature {7].
However, the temperatures of interest to us are re-
mote from the inversion temperature, which corres-
ponds to a value kT /ey = 0.95, With the assumed
value of £45/k, the inversion temperature for a mix-
ture of cesium and helium is equal to ~39° K. Calcu-
lation shows that for the temperature region 400°—
1000° K and above, the thermal diffusion ratio kA de-
pends very little on the temperature. Figure 2 there-
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fore gives only one line corresponding to the tempera-
ture range indicated. Within the framework of the
theory considered, kT does not depend on pressure.

It is noteworthy that for small values of p;/P (up to
0.04—0.06) k = p,;/P (Fig. 2). At larger values of
p;/P, k < p;/P. Usually the thermal diffusion con-
stant e = [kp/(py/P)] (1 — py/P) for mixtures of vari-
ous gases is markedly less than unity {2, 8], i.e., kg <
< (py/P)(1 — py/P). With increasing difference in the
molecular weights (masses) of the molecules of the

mixture o increases. For M; >» M, (when (M — M,)/

/(M + My) = 1) and in the case when the interaction of
the molecules obeys a Lennard-Jones potential, o is
somewhat less than 0.4 for p;/P = 0.5 and kT/ey > 10
[8].* Our calculations whose results are shown in Fig.
2, show that for small p;/P =0.5, the values of a fora
mixture of cesium and helium are close to unity for
kT/eyy > 10, since kp ~ p;/P. Estimates that we made
for a mixture of cesium and argon [(M; — M,)/ (M, +

+ M,) = 0.54] for the case p;/P = 0.02 and kT/eg,, > 10
gave kT ~ 8107 and @ &~ 0.4, Thus, for a reduction
in the difference in the masses of the molecules the
value of ap was markedly reduced.

Using the values of D;; and k- found, we shall det-
ermine the fluxes of concentration diffusion and ther-
mal diffusion for the case of condensation of small
additions of cesium in helium at the surface of a
cooled tube.** The only other thing to be allowed for is
that when there is condensation (or evaporation and
other processes with change of volume of any com~
ponent in the gaseous phase) an additional mass diffu-
sion flux arises, usually called the Stefan flux [3].
The diffusion flux of the first (condensing) component
may be written as

_ M,PDy, M,

p—t ><
! RT (M,— My p/P+ M,
P k M,p;
d -2 Torad T | + W, =1L (5
x[gra P+Tgra ]+ RT )

The last term on the right of (5) describes transfer
of material with a2 mass flux whose velocity is Wy.

The flux of the second component (inert gas), allow-
ing for the mass flux Wy(My(P — py)/RT, must be equal
to zero, since the condensation surface is imperme-
able for this component, while the total pressure must
be the same everywhere. The condition that the flux
of the second component must be zero gives

Wy = g RT/M,(P — py), (6)

*The calculations were made for a Lennard-Jones
potential. Calculations for simpler interaction po-
tentials (for example, taking into account only col-
lison forces which fall off according to a power law
with distance) may give smaller values of the thermal
diffusion diffusion constant ar.

**We shall consider a case with such small concen-
trations of cesium in helium that the cesium vapor in
the boundary layer at the condensation surface will
not become oversaturated anywhere and no formation
of mist will begin.
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where g is the flux of the first component without the
Stefan flux, given by formula (1).
Substituting the value of Wy into (5), we obtain
_ MPD, 1
RT 1 —pJP

g Py k’l‘ .

& [ grad —7; -+ - grad T] .

Allowance for the Stefan flux leads to a contraction
of the quantity [(M; — M,)p;/P + My] in the formula for
g;, but a correction factor 1/(1 — p,/P) has. appeared.
In the case when the contribution of the condensing
component is small, the factor 1/ — p;/P) is close
to unity and may be omitted. But this still does not
mean that the mass flux is very small. From the
relation presented it may be found that the fraction of
material transported with the mass flux is (M;p,/P)/
/I(M; = My)p,/P + M,}. For a mixture of cesium and
helium with a cesium content of p,/P = 0.02, this
fraction is approximately equal to 0.4, while 1/(1 —
- p,/P)~ 1.02. If p,/P=2-10"* (as will be assumed
in the subsequent calculations), the fraction of mate-
rial transferred with the Stefan flux will be small (of
the order 0.01). If the first term in (5) is expressed
in terms of Wy by means of (6), we obtain

_ M1p1+M2(P~'—P_1)W =oW
1 RT M M

where p = [Mypq + My(P ~ p4)]/RT is the mass density of
the mixture.

To simplify calculations of condensation in tubes
allowing for thermal diffusion, we make use of the
concept of the reduced film [3] instead of the boundary
layer. This is a nominal motionless film of gas en-~
circling the tube, in which the processes of transport
are accomplished by molecular action. Outside the
film turbulent transfer considerably exceeds molecular
and leads to equilibrium of temperatures or partial
pressures (concentrations). If we neglect the influence
of surface curvature, the thicknesses of the thermal
ST and diffusion &y reduced films may be expressed
by the following formulas:

= Mo =,d/Nu,‘

6D = DIZ/Q'D = d.//NuD .

In the absence of thermal diffusion, the transfer
diffusion coefficient is introduced by the relation

g1=MU_P_L)_(& ]
v : Ls

RT P P
where (p;/P)y and (p;/P)g are the relative partial
pressures of cesium in the gas volume and at the tube
surface. The cesium pressure at the tube surface may
be considered equal to the saturation pressure at the
surface temperature Tg, i.e., at the temperature
assumed by a film of condensed cesium, which is a
good conductor of heat. The temperature in the denom-
inator of the quantity MyapP/RT may be taken to be
equal to the mean temperature, or even to the temper-
ature Ty in the gas volume. It should be noted that
A~ Tl/2 and Dy/T ~ T1/2, approximately. Therefore,
when A is regarded as a constant as temperature
changes, it is reasonable to consider the ratio Dy;y/T
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to be constant also [3], i.e., the quantity Mi(apP/
/RT) = M[(Nup/d)(D,,P/RT)].

Because of the analogy between phenomena of heat
transfer and diffusion, we may use a single param-
etric relation Nu = f(Re, Pr) for both processes. In
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Fig. 3. Schematic of reduced films near the
tube surface.

determining Nup the thermal Prandt]l number Pr = v/a
in the parametric relation should be replaced by the
diffusion parameter Prp = v/Dyy. The relation [9]

Nu = A4 Pr0-35Rex,
may be taken as a calculation relation, where the coef-
ficient A and the exponent n are different in different
ranges of Re. For example, for Re = 100~5000, A =
0.665 and n = 0.47, '

In the case of small molar additions of cesium to
helium, the coefficient A, v and 2 may be reduced to
those for pure helium. Because of the comparatively
small values of Dy,, it turns out that Prp > Pr, i.e.,
at Nup > Nu for identical values of Re number. There-
fore, 6p < 67 (Fig. 3). The diffusion flux due to con-
centration diffusion (without thermal diffusion) is equal

to
Mya,Priop, ) e
7 = —— —) —|— =
&1conc RT, U P (P )S —‘

S

_ MDiuP (0 P)v — (p/P)s
RT, 8y

The temperature drop is localized in the thermal
reduced film. At the outer boundary of the diffusion
film the temperature is

'TD =Ty + Ty — Ts )60/5r-
The thermal diffusion flux entering the diffusion
reduced film may be estimated as

_ MDLP R Ty —T,
glth_ RTV TD 6T ’

kT corresponding to the original concentration of ce-
sium in the gas volume. ,

The given thermal diffusion flux must reach the
walls, although, as we approach the wall and as p,/P
is reduced, the thermal diffusion ratio kT falls off.
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But the Stelan flux which is created takes part in the
transport ol cesium, Morcover, with decrease of the
thermal diffusion flux inside the reduced film, the
gradicnt p,/P increases, and so does the concentra-
tion diffusion flux. The result, in fact, is a decrease
in the thickness of the diffusion reduced film and an
increasc of the gradient in it (the broken line in Fig,
3). We may consider it to be approximately true that
the total diffusion flux g; of cesium to the tube sur-
face is equal to the sum of the fluxes that have been
found, giconc and gith-
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Fig. 4. Diffusion flux of cesium g;, kg/m’- sec,

to the tube surface during condensation from a

mixture with helium (P = 9.81-10* N/m?, (pi/

/P)y = 2-107%, T, =873° K, Tg = 373° K: 1) for
Ziconc: 2) gith: 3) 1.

The calculated values of diffusion fluxes are shown
in Fig. 4. It may be seen from the figure that the ther-
mal diffusion flux constitutes about 55% of the concen-
tration diffusion flux and about 35% of the total dif-
fusion flux. Of course, the results obtained are par-
ticularly tentative in nature. Nevertheless, it follows
from them that in the case of condensation of cesium
vapor from amixture of cesium and helium, we must take
account of thermal diffusion (for large temperature
differences).

When we make a strict examination of heat transfer
in the gases, in addition to the thermal flux proportion-
al to the temperature gradient, we must also take into
account the heat flux proportional to the concentration
gradient (the Dufour effect). Moreover, we must take
into account heat transfer due te flow of molecules of
the gas [1-3]. The full expression for the heat flux q
{(allowing for the Stefan flux during condensation) has
the form

L.

g=—hgrad T + RThk, — 8L __
My

5
+=-RT
(p/PYM, 2

The second and the third terms simply express the
above heat fluxes. The third term has been written
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down for the case of the monatomic gas helium pro-
ceceding to the wall, the specific heat of 1 mole of the
helium being 5R/2 (at constant pressure).

Estimates for a mixture of cesium and helium show
that in this case, when strong thermal diffusion is
possible, only the first term in expression (7) is ap-
preciable. Even for p;/P = 0.02, the second and third
terms together constitute less than 3% of the first
term.

NOTATION

g1 and g, are the diffusion fluxes of the components;
M; and M, are their molecular weights; P and P, are
the total pressure and partial pressure of the first
component; Dy, is the diffusion coefficient for a two~
component mixture; R is the universal gas constant; T
is the temperature; kT is the thermal diffusion ratio;
r is the distance between molecules; € and o are the
parameters of Lennard-Jones potential function; k is
the Boltzmann's constant; Wy is the Stefan mass ve-
locity; p is the mass density of mixture; 61 and oy
are the thickness of thermal and diffusion reduced
films; A is the thermal conductivity; a and ap are the
heat transfer and diffusion transfer coefficients; d is
the tube diameter; Nu = @d/A and Nup = apd/Dy, are
the thermal and diffusion Nusselt numbers; Re = Wd/v
is the kinematic viscosity; Pr = v/a and Prpy = v/Dy,
are the thermal and diffusion Prandtl numbers; o is
the thermal diffusivity; q is the specific heat flux.
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